

Grains Research & Development Corporation

Legumes in crop rotations reduce nitrous oxide emissions, compared to fertilized non-legume rotations

<u>Graeme Schwenke</u>, David Herridge, Guy McMullen, Bruce Haigh, Kelly Leedham and Pip Brock *Tamworth, New South Wales, Australia*

Soil nitrous oxide (N₂O) emissions . . .

- N₂O comes from natural processes in the soil
 - nitrification and denitrification
- What matters is the <u>extra</u> nitrogen that humans add to soil
 - Fertiliser
 - Legume N₂-fixation by rhizobia
- Emission Factor (EF) = N emission / N input x 100%
 - 0.3% of fertiliser N for Australian dryland cereal crops
 - 1.0% of <u>legume</u> N for Australian dryland pulses

Australia's northern grains region

Northern grains region:

- 4 M ha cropping
- 7 M tonnes grain/yr
- winter & summer crops

istries

• 500-800 mm AAR

Our Project Objectives

Compare soil N_2O emissions during various crops

• canola, chickpea, wheat, sorghum, barley

 \checkmark Compare soil N₂O emissions across crop rotations

- canola-wheat-barley
- chickpea-wheat-barley
- chickpea-wheat-chickpea
- chickpea-sorghum

Derive soil N₂O emissions factors for legume/fertiliser N

- chickpea (+ fababean and fieldpea in separate experiment)
- non-legume crops (canola, wheat, barley, sorghum)

Project Methods

Treatments were crop rotations (dryland)

•	2009		2010		2011
•	canola+N	\rightarrow	wheat+N	\rightarrow	barley+N
•	chickpea	\rightarrow	wheat	\rightarrow	chickpea
•	chickpea	\rightarrow	wheat+N	\rightarrow	barley
•	chickpea		→ sorg	ghum+N	\rightarrow

(+N = urea fertiliser applied at sowing)

- 3 replications
- Zero-till, stubble-retained, chemical weed and disease control
- Plots were 12 m x 6 m
- Automatic air-sampling chambers (50 cm x 50 cm x 20 cm)
 - Air samples analysed in-field 7-8 times/day for N₂O, CH₄ & CO₂
- Legume N_2 -fixation input measured by ¹⁵N natural abundance

2009 ~ Air sample chambers in chickpea and canola

ALS. M. Maple the ar & line have been and the

HUR TEMPER

40.1

Gas chromatograph inside field lab

1

2010 ~ Air sample chambers in wheat and newly sown sorghum

2011 ~ Sorghum ready for harvest, chamber in wheat fallow

2011 ~ Air sample chambers in barley, chickpea and fallow

Fallow

Chickpea

Nitrogen inputs

- Urea mid-row banded at sowing;
 - canola (80 kg N/ha), wheat (80 kg N/ha), sorghum (40 kg N/ha), and barley (60 kg N/ha)
- Chickpea N₂-fixation (via ¹⁵N natural abundance)
 - 2009
 - 18% Ndfa = 49 kg N/ha fixed from air
 - low in comparison to 41% Australian average
 - 2011
 - 37% Ndfa = 41 kg N/ha fixed from air
 - low plant biomass due to dry winter

Cumulative N₂O emissions

Cumulative N₂O emissions

Month / Year

Emission factors (by crop)

Crop	Total N added (kg N/ha)	N ₂ O Emission (during crop growth)	Factor (%) (over 1 year)
Canola	80	0.37	0.78
Chickpea (2009)	49	0.06	0.26
Wheat (after canola)	80	0.51	0.59
Wheat (after chickpea)	80	0.39	0.46
Sorghum	40	0.92	1.31
Barley	60	0.07	0.08
Chickpea (2011)	41	0.25	0.78

Emission factors (by rotation)

Crop rotation	Total N added (kg N/ha)	Total N ₂ O-N emitted (g N/ha)*	N ₂ O Emission Factor (%) *
	00 00 00	4500	0.00
canola+N_wheat+N_barley+N	80 + 80 + 60	1523	0.69
chickpea_wheat+N_barley	49 + 80 + 0	885	0.69
chickpea_wheat_chickpea	49 + 0 + 41	614	0.68
chickpea_sorghum+N_	49 + 40	1028	1.16

A lifecycle analysis of the first 2-year rotations . . .

- most greenhouse gas emissions were due to fertiliser N
- N₂O emitted directly from the soil accounted for up to 45% of total greenhouse gas emissions
- The remainder was associated with N fertiliser production, transport and application, and urea hydrolysis

Conclusions

- N₂O emissions during legume growth were very low
- In-crop N₂O emissions during growth of fertilised crops can be significant if soil is saturated soon after fertiliser is applied
- N₂O emissions during post-harvest fallow can be significant if soil is saturated after residue decomposition of N-rich crops (chickpea, canola)
- Over a multi-year crop rotation, legumes reduced total N₂O emissions and total greenhouse gas emissions, but the loss as a proportion of N input was similar to N fertiliser.

Rainfall (mm) ~ Monthly Totals & Long-term Average

